提高铝毒胁迫下植物氮磷利用的策略分析

赵学强, 沈仁芳*
中国科学院南京土壤研究所, 土壤与农业可持续发展国家重点实验室, 南京210008

通信作者:沈仁芳;E-mail: rfshen@issas.ac.cn;Tel: 025-86881563

摘 要:

氮肥和磷肥利用率低是全球农业生产面临的突出问题。当前作物高产主要依赖于大量化肥的施用, 这带来包括土壤酸化在内的一系列环境问题。铝毒是酸性土壤限制植物生长的主要因子。虽然在植物氮磷高效利用机制方面已开展了大量研究工作, 但是如何提高铝毒胁迫下植物氮磷利用并未得到关注。铝毒最明显的表型是抑制根系生长, 根系是植物吸收养分的主要部位, 所以铝毒与植物养分吸收效率密切相关。本文首先简要介绍了土壤铝毒的产生以及植物铝毒和耐铝机制, 然后深入分析了铝与氮、磷在土壤和植物中的相互作用, 最后提出了提高铝毒胁迫下植物氮磷利用的策略。

关键词:铝毒; 铵态氮; 硝态氮; 磷效率; 酸性土壤

收稿:2015-09-13   修定:2015-07-28

资助:中国科学院战略先导科技专项(XDB15030202)和国家自然科学基金(41230855)。

Strategies for Increasing the Utilization of Nitrogen and Phosphorus by Plants under Aluminum Stress

ZHAO Xue-Qiang, SHEN Ren-Fang*
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China

Corresponding author: SHEN Ren-Fang; E-mail: rfshen@issas.ac.cn; Tel: 025-86881563

Abstract:

Low use efficiency of nitrogen (N) and phosphorus (P) is one serious problem in the productive system of global agriculture. High crop yield of current agriculture mainly depends on the application of large amounts of fertilizers, resulting in a series of environmental impacts including soil acidification. Aluminum (Al) toxicity is the primary factor limiting plant growth in acid soils. Much research has been done on the mechanisms of efficient utilization of N and P by plants, but less attention is paid to those mechanisms under Al stress. The obvious effect of Al toxicity on plants is the inhibition of root growth that is essential for the uptake of most nutrients from soils by plant roots, so Al toxicity is directly related to nutrient uptake efficiency. In this review, we first briefly introduced the occurrence of Al toxicity and how plants respond to this stress. Then, various interactions between Al and N, P in soil–plant system were summarized with regard to N and P efficiencies. Finally, two strategies were suggested to increase the utilization of N and P by plants under Al stress.

Key words: aluminum toxicity; ammonium-nitrogen; nitrate-nitrogen; phosphorus efficiency; acid soil

此摘要已有 2549 人浏览

Back to top